Fourier Transform and Communication Systems

Mathematically speaking...

The Most Beautiful Equation

Euler's identity
 (Euler's equation)

Relate the three fundamental constants e, π and i.

Fact: When mathematicians describe equations as beautiful, they are not lying. Brain scans show that their minds respond to beautiful equations in the same way other people respond to great paintings or masterful music.

Euler's Formula on the Complex Plane

Euler's Formula on the Complex Plane

Rotating Vector in a Complex Plane

$\operatorname{Im}\left\{e^{j \theta}\right\}=\sin \theta$

Euler's Formula

Euler's Formula $\cos (-\alpha)=\frac{1}{2}\left(e^{j(-\alpha)}+e^{-j(-\alpha)}\right)$

$$
=\frac{1}{2}\left(e^{-j \mu}+e^{j \alpha}\right)
$$

$$
=\cos (\alpha)
$$

Complex

 exponential$$
\left.\begin{array}{l}
\cos (A)=\operatorname{Re}\left\{e^{j A}\right\}=\frac{1}{2}\left(e^{j A}+e^{-j A}\right) \\
\sin (A)=\operatorname{Im}\left\{e^{j A}\right\}=\frac{1}{2 j}\left(e^{j A}-e^{-j A}\right)
\end{array}\right\}
$$

$$
\begin{aligned}
& 2 \cos ^{2} x=1+\cos (2 x) \\
& 2 \sin ^{2} x=1-\cos (2 x)
\end{aligned}
$$

$$
2 \sin (x) \cos (x)=\sin (2 x)
$$

$$
\frac{d}{d x} \sin x=\cos x
$$

$$
\cos (x) \cos (y)=\frac{1}{2}(\cos (x+y)+\cos (x-y))
$$

(product-to-sum formula)

(Continuous-Time) Fourier Transform

$$
\begin{aligned}
& g(t)=\int_{-\infty}^{\infty} G(f) e^{j 2 \pi f t} d f \stackrel{\mathcal{F}}{\rightleftharpoons} G(f)=\int_{-\infty}^{\infty} g(t) e^{-j 2 \pi f t} d t \\
& \text { Complex exponential: } e^{j 2 \pi f t}=\cos (2 \pi f t)+j \sin (2 \pi f t) \\
& \begin{array}{l}
\text { The relationship on the left is simply a decomposition of the } \\
\text { signal } g(t) \text { into a linear combination of (potentially } \\
\text { infinitely many) }
\end{array} e^{j 2 \pi f t} \text { components at different frequencies. }
\end{aligned}
$$

(Continuous-Time) Fourier Transform

$$
g(t)=\int_{-\infty}^{\infty} G(f) e^{j 2 \pi t t} d f \stackrel{\mathcal{F}}{\rightleftharpoons} G(f)=\int_{-\infty}^{\infty} g(t) e^{-j 2 \pi t t} d t
$$

From the decomposition point of view, the value of $G(f)$ at a particular frequency f is simply the weight (scaling/ coefficient) which tells how much $e^{j 2 \pi f t}$ component there is in $g(t)$.

By the orthogonality among complex exponential functions, the value of $G(f)$ at a particular frequency f can be calculated by the formula above.

This coefficient $G(f)$ considered as a function of frequency is the Fourier transform of our signal.

7 Equations

that changed the world \ldots and still rule everyday life

7 Equations

$i \hbar \frac{\partial}{\partial t} \psi=\hat{H} \psi$

$$
\nabla \times \mathrm{H}=\frac{1}{c} \frac{\partial \mathrm{E}}{\partial t}
$$

First among equals

Behind the scenes, equations rule our everyday lives. Mathematician Ian Stewart goes in search of the most influential

(Continuous-Time) Fourier Transform

Time Domain
Frequency Domain

Signals in this form is "easy" to work with under LTI system.

$$
g(0)=\int_{-\infty}^{\infty} G(f) d f
$$

$$
G(0)=\int_{-\infty}^{\infty} g(t) d t
$$

$$
\begin{aligned}
& g(t)=\int_{-\infty}^{\infty} G(f) e^{j 2 \pi f t} d f \underset{\text { inverse transforin }}{\underset{\mathcal{F}}{\text { direct transform }} \rightleftharpoons} G(f)=\int_{-\infty}^{\infty} g(t) e^{-j 2 \pi f t} d t \\
& \text { Capital letter is used to represent } \\
& \text { corresponding signal in the frequency domain. }
\end{aligned}
$$

Delta function $\delta(f)$

- (Dirac) delta function or (unit) impulse function
- Usually depicted as a vertical arrow at the origin
- Not a true function
- Undefined at $f=0$
- Intuitively we may visualize $\delta(f)$ as an infinitely tall, infinitely narrow rectangular pulse of unit area

$A \delta(f)$

- (Dirac) delta function or (unit) impulse function
- Usually depicted as a vertical arrow at the origin
- Not a true function
- Undefined at $f=0$
- Intuitively we may visualize $A \delta(f)$ as an infinitely tall, infinitely narrow rectangular pulse of area A

Fourier Transform Pairs (1)

Time Domain
Frequency Domain

$$
g(t)=\int_{-\infty}^{\infty} \vec{G}(f) e^{j 2 \pi f t} d f \frac{\mathcal{F}}{\square} \quad \int_{-\infty}^{\infty} \quad \int_{-\infty}^{\infty}(t) e^{-j 2 \pi f t} d t
$$

$$
\cos (A)=\frac{1}{2}\left(e^{j A}+e^{-j A}\right) e^{j 2 \pi f_{0} t} \frac{\mathcal{F}}{\square} \delta\left(f-f_{0}\right)
$$

$\frac{e^{j 2 \pi f_{0} t}+e^{-j 2 \pi f_{0} t}}{2}=\cos \left(2 \pi f_{0} t\right) \stackrel{\mathcal{F}}{\rightleftharpoons} \frac{1}{2} \delta\left(f-\left(-f_{0}\right)\right)+\frac{1}{2} \delta\left(f-f_{0}\right)$
$=\frac{1}{2} e^{j 2 \pi t_{0} t}+\frac{1}{2} e^{j 2 \pi\left(-t_{0}\right) t}$

60
$\sin (A)=\frac{1}{2 j}\left(\frac{j A}{e}-e^{-j A}\right)$
Practice Problems (A Revisit)

Practice Problems (More)

Fourier Transform of Symbolic Expression in MATLAB

```
function G = fourierf(g)
syms f
G = simplify(subs(fourier(g),'w',2*pi*f));
end
```

\gg syms $t ; g=\exp \left(1 j^{*} 2^{*} p i^{*} 5^{*} t\right)$;
$\gg G=$ fourierf(g)
G =
dirac(f - 5)

\gg syms t f0; $g=\cos (2 * p i * f 0 * t)$;
>> G = fourierf(g)
G =
dirac(f $+\mathrm{f} 0) / 2+\operatorname{dirac}(f-\mathrm{f} 0) / 2$
>> pretty(G)
$\operatorname{dirac}(f+f 0) \quad \operatorname{dirac}(f-f 0)$

Fourier Transform Pairs (2)

Time Domain
Frequency Domain

$$
g(t)=\int_{-\infty}^{\infty} G(f) e^{j 2 \pi f t} d f \stackrel{\mathcal{F}}{\rightleftharpoons} G(f)=\int_{-\infty}^{\infty} g(t) e^{-j 2 \pi f t} d t
$$

sinc function

sinc function

Zero crossings are at all non-zero integer multiples of π because $\sin (x)=0$.
As $x \rightarrow 0$, we have $\frac{0}{0}$. Using L'Hospital's Rule, we set $\operatorname{sinc}(0) \equiv 1$.

sinc function

sinc function

Amplitude of $\sin (x)$ decreases continuously as $\frac{1}{x}$.

Fourier Transform of Symbolic Rectangular Function in MATLAB

```
>> syms a t
>> g = rectangularPulse(-a,a,t)
g = 
rectangularPulse(-a, a, t)
>> G = fourierf(g)
G =
sin(2*pi*a*f)/(pi*f)
```

$$
\frac{\sin (2 \pi f a)}{\pi f}=2 a \operatorname{sinc}(2 \pi f a)
$$

 or speakers

THE PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS

Edited under the Superintendence of W. K. BRASHER, C.B.E., M.A., M.I.E.E., Secretary

VoL. 99. Part III (Radio and Communication Engineering), No. 58.	MARCH 1952
$621.391: 519.21: 530.162$	Paper No. 1239
RADIO SECTION	

INFORMATION THEORY AND INVERSE PROBABILITY IN TELECOMMUNICATION
Sam theoren greater main $r v$, wisn

By P. M. WOODWARD, B.A., and I. L. DAVIES, M.A., Graduate.

$$
\begin{equation*}
f(t) \equiv \sum_{r} f(r / 2 W) \operatorname{sinc}(2 W t-r) \tag{24}
\end{equation*}
$$

where $\operatorname{sinc} x$ is an abbreviation for the function $(\sin \pi x) / \pi x$. This function occurs so often in Fourier analysis and its applications that it does seem to merit some notation of its own. Its most important properties are that it is zero when x is a whole number but unity when x is zero, and that

Normalized sinc function

and $\quad \int_{-\infty}^{\infty} \operatorname{sinc}(x-r) \operatorname{sinc}(x-s) d x=\left\{\begin{array}{l}1, r=s \\ 0, r \neq s\end{array}\right.$
$71 \quad r$ and s both being integers. The importance of the identity (24)

Normalized sinc function

Its zero crossings are at non-zero integer values of its argument.

Fourier Transform Pairs (2)

Time Domain
Frequency Domain

$$
g(t)=\int_{-\infty}^{\infty} G(f) e^{j 2 \pi f t} d f \stackrel{\mathcal{F}}{\rightleftharpoons} G(f)=\int_{-\infty}^{\infty} g(t) e^{-j 2 \pi f t} d t
$$

Fourier Transform Pairs (3)

Time Domain
Frequency Domain

$$
g(t)=\int_{-\infty}^{\infty} G(f) e^{j 2 \pi f t} d f \stackrel{\mathcal{F}}{\rightleftharpoons} G(f)=\int_{-\infty}^{\infty} g(t) e^{-j 2 \pi f t} d t
$$

74

More realistic signal...

plotspect.m

plotspect.m

```
% plotspec(x,t) plots the spectrum of the signal x
% whose values are sampled at time (in seconds) specified in t
function plotspect(x,t)
N=length(x);
Ts = t(2)-t(1);
ssf=((-N/2):(N/2-1))/(Ts*N);
fx=Ts*fft(x(1:N));
fxs=fftshift(fx);
subplot(2,1,1);
set(plot(t,x),'LineWidth',1.5); % plot the waveform
xlabel('Seconds'); % label the axes
subplot(2,1,2);
set(plot(ssf,abs(fxs)),'LineWidth',1.5); % plot magnitude spectrum
xlabel('Frequency [Hz]'); ylabel('Magnitude') % label the axes
```


Phone/Cellphone (Muffled) Audio

PILOT'S ALPHABET

- International

Radiotelephony Spelling

Alphabet.

- Pilots use it so that essential letter combinations can be easily understood by individuals transmitting
 and receiving voice messages.

VoLTE Audio

VoLTE Audio: AMR-WB

iPhone 5 supports HD Voice
in the form of AMR-WB over 3G (UMTS)

Digital Audio Watermarking

